Digital histology

Synonyms
Digital pathology imaging
Description

Spine Analyzer allows to semi-automatically segment dendritic spines in 3D+t images and to measure their volumes and the intensities of the signal within in different channels over time.

Neurites with segmented dendritic spines
Description

TissUUmaps is a browser-based tool for fast visualization and exploration of millions of data points overlaying a tissue sample. TissUUmaps can be used as a web service or locally in your computer, and allows users to share regions of interest and local statistics.

Description

The tool exports rectangular regions, defined with the NDP.view 2 software (hammatsu) from the highest resolution version of the ndpi-images and saves them as tif-files.

Click the button and select the input folder. The input folder must contain pairs of ndpi and ndpa files. The regions will be exported to a subfolder of the input folder names zones.

has topic
has function
imagej toolset to export regions from ndpi and ndpa-files
Description

Histology Topography Cytometry Analysis Toolbox (histoCAT) is a package to visualize and analyse multiplexed image cytometry data interactively. It can also export data in.fcs data for further analysis using  a specialized cytometry sofwtare such as Flowjo. 

It can be run as a compiled standalone or from matlab.

Description

Using a Hamamatsu slide scanner such as the NanoZoomer, you may end up with NDPI files that can't always be directly open in standard image analysis software such as ImageJ. NDPITools is a collection of software that can convert NDPI files to standard TIFF files, possibly cutting them into smaller JPEG or TIFF pieces that will better fit into your computer's memory. It comes with a bundle of plugins for ImageJ which enable the use of the software directly inside ImageJ with point-and-click.

 

has topic
has function
need a thumbnail
Description

This small plugin demonstrates the use of OpenSlide in java: it  will extract an imageJ roi drawn from the thumbnail of the whole slide image, or the full image at the desired resolution from an hammatsu NDPI file. Note that z stack are not supported by openslide (neitheir ndpiS).

has topic
has function
Description

BioImage.IO -- a collaborative effort to bring AI models to the bioimaging community. 

  • Integrated with Fiji, ilastik, ImJoy and more
  • Try model instantly with BioEngine
  • Contribute your models via Github

This is a database of pretrained deep Learning models. 

need a thumbnail
Description

Dragonfly is a software platform for the intuitive inspection of multi-scale multi-modality image data. Its user-friendly experience translates into powerful quantitative findings with high-impact visuals, driven by nuanced easy-to-learn controls.

For segmentation: It provides an engine fior machine Learning, Watershed and superpixel methods, support histological data .

It offers a 3D viewer, and python scripting capacities .

It is free for reserach use, but not for commercial usage.

DragonFly
Description

CRImage a package to classify cells and calculate tumour cellularity

CRImage provides functionality to process and analyze images, in particular to classify cells in biological images. Furthermore, in the context of tumor images, it provides functionality to calculate tumour cellularity.

has function
Description

AssayScope is an intuitive application dedicated to large scale image processing and data analysis. It is meant for histology, cell culture (2D, 3D, 2D+t) and phenotypic analysis. 

need a thumbnail
Description

A deep-learning solution for stain color normalization in digital histology images

has function
need a thumbnail
Description

ZEN and APEER – Open Ecosystem for integrated Machine-Learning Workflows

Open ecosystem for integrated machine-learning workflows to train and use machine-learning models for image processing and image analysis inside the ZEN software or on the APEER cloud-based platform

Highlights ZEN

  • Simple User Interface for Labeling and Training
  • Engineered Features Sets and Deep Feature Extraction + Random Forrest for Semantic Segmentation
  • Object Classification workflows
  • Probability Thresholds and Conditional Random Fields
  • Import your own trained models as *.czann files (see: czmodel · PyPI)
  • Import "AIModel Containes" from arivis AI for advanced Instance Segmentation
  • Integration into ZEN Measurement Framework
  • Support for Multi-dimensional Datasets and Tile Images
  • open and standardized format to store trained models
ZEN Intellesis Segmentation

ZEN Intellesis Segmentation - Training UI

ZEN Intellesis - Pretrained Networks

ZEN Intellesis Segmentation - Use Deep Neural Networks

Intellesis Object Classification

ZEN Object Classification

Highlights Aarivis AI

  • Web-based tool to label datasets to train Deep Neural Networks
  • Fully automated hyper-parameter tuning
  • Export of trained models for semantic segmentation and AIModelContainer for Instance Segmentation
Annotation Tool

APEER Annotation Tool

Description

Orbit Image Analysis is a free open source software with the focus to quantify big images like whole slide scans.

It can connect to image servers, e.g. Omero.
Analysis can be done on your local computer or via scaleout functionality in a distrubuted computing environment like a Spark cluster.

Sophisticated image analysis algorithms incl. tissue quantification using machine learning, object segmentation and classification are build in. In addition a versatile API allows you to enhance Orbit and to run your own scripts.

Orbit
Description

The skin tools measure the thickness of the epidermis and the interdigitation index.

The input images are masks that represent the epidermis and that have been created from images of stained histological sections. The mask must touch the left and right border of the image. The dermal-epidermal border must be on the lower site of the image. The interdigitation index can be measured for one or more segments per image. As a measure of the thickness of the epidermis the lengths of a number of random line segments are measured. The line segments start at the lower border, are perpendicular to the lower border and end at the opposite border of the mask.

See installation Instructions on the website.

has topic
Measure thickness from a mask
Description

The Adipocytes Tools help to analyze fat cells in images from histological section. This is a rather general cell segmentation approach. It can be adapted to different situations via the parameters. This means that you have to find the right parameters for your application.

Sample Image: [0178_x5_3.tif](http://dev.mri.cnrs.fr/attachments/190/0178_x5_3.tif)

has topic
has function
Description

Analysis of adipocyte number and size. The original code and example images supposed to be discovered at http://webspace.buckingham.ac.uk/klanglands/ but currently the webpage is missing the code and sample images.

has topic
has function
Description

The ultimate goal of the NET framework is to make images of networks processable by computers. Therefore we want to have a pixel based image as input, as output we want a representation of the network visible in the image that retains as much information about the original network as possible. NET achives this by first segmenting the image and then vectorizing the network and then extracting information. The information we extract is

  • First and foremost the graph of the network. We find the crossings (nodes) and connections between crossings (edges) and therefore extract information about the neighborhood relations, the topology of the network.
  • We also extract the coordinates of all nodes which enables us to embed them into space. We therefore extract information about the geometry of the network.
  • Last but not least we track the radii of the edges in the extraction process. Therefore every edge has a radius which can be identified with its conductivity.

In the following we will first provide detailed instructions on how to install NET on several platforms. Then we describe the functionality and options of each of the four scripts that make up the NET framework.

has topic
need a thumbnail
Description

Kappa is a Fiji plugin for Curvature Analysis.

It allows a user to measure curvature in images in a convenient way. You can trace an initial shape with a B-Spline curve in just a few clicks and then fit that curve to image data with a minimization algorithm. It’s fast and robust.

has topic
has function
Kappa user interface
Description

QuantCenter is the framework for 3DHISTECH image analysis applications. with the goal of helping the pathologists to diagnose in an easier way. QuantCenter, is optimized for whole slide quantification. It has a linkable algorithm concept that tries to provide an easy-to-use and logical workflow. The user has different quantification modules that he or she could link one after other to fine-tune or to speed up the analysis.

QuantCenter logo
Description

QuPath is open source software for Quantitative Pathology. QuPath has been developed as a research tool at Queen's University Belfast.

QuPath
Description

This is the "prediction step" of the Pyxit segmentation model builder. It is a learnable segmentation algorithm based on ground-truth images and segmentation mask. It learns a multiple output pixel classification algorithm. It downloads from Cytomine-Core annotation images+alphamasks from project(s), build a segmentation (pixel classifier) model which is saved locally. Typical application: tumor detection in tissues in histology slides. 

Pyxit example
Description

This is a learnable segmentation algorithm based on ground-truth images and segmentation mask. It learns a multiple output pixel classification algorithm. It downloads from Cytomine-Core annotation images+alphamasks from project(s), build a segmentation (pixel classifier) model which is saved locally. Typical application: tumor detection in tissues in histology slides. It is based on "Fast Multi-Class Image Annotation with Random Subwindows and Multiple Output Randomized Trees" http://orbi.ulg.ac.be/handle/2268/12205 and was used in "A hybrid human-computer approach for large-scale image-based measurements using web services and machine learning" http://orbi.ulg.ac.be/handle/2268/162084?locale=en

Segmentation illustration
Description

Cytomine is a rich internet application using modern web and distributed technologies (Grails, HTML/CSS/Javascript, Docker), databases (spatial SQL and NoSQL), and machine learning (tree-based approaches with random subwindows) to foster active and distributed collaboration and ease large-scale image exploitation.

It provides remote and collaborative principles, rely on data models that allow to easily organize and semantically annotate imaging datasets in a standardized way (using user-defined ontologies associated to regions of interest), efficiently support high-resolution multi-gigapixel images (incl. major digital scanner image formats), and provide mechanisms to readily proofread and share image quantifications produced by any image recognition algorithms.

By emphasizing collaborative principles, the aim of Cytomine is to accelerate scientific progress and to significantly promote image data accessibility and reusability. Cytomine allows to break common practices in this domain where imaging datasets, quantification results, and associated knowledge are still often stored and analyzed within the restricted circle of a specific laboratory.

This software is e.g. being used by life scientists in to help them better evaluate drug treatments or understand biological processes directly from whole-slide tissue images (digital histology), by pathologists to share and ease their diagnosis, and by teachers and students for pathology training purposes. It is also used in various microscopy applications.

Cytomine can be used as a stand-alone application (e.g. on a laptop) or on larger servers for collaborative works.

Cytomine implements object classification, image segmentation, content-based image retrieval, object counting, and interest point detection algorithms using machine learning.

cytomine logo
Description

Adiposoft is an automated Open Source software for the analysis of adipose tissue cellularity in histological sections.

Example data can be found on the plugin description page in ImageJ wiki (download link). There is also a link to a MATLAB version of the workflow.

has topic
Description

CellDetector can detect cells (or other objects) in microscopy images such as histopathology, fluorescence, phase contrast, bright field, etc. It uses a machine learning-based method where a cell model is learned from simple dot annotations on a few images for training and predict on test sets. The installation requires some efforts but the instruction is well explained. Training parameters should be tuned for different datasets, but the default settings could be a good starting point.

has function